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The last of these formulae is particularly important because it defines all the 
possible P~, V;, points which can be reached in a single shock compression from 
the initial conditions P*, V*. This follows from the fact that E~ -E* is related 
to P~, V~ by the LID equation of state as well as by the Rankine-Hugoniot 
relation. It is therefore possible to eliminate E~ -E* and obtain a specific 
relationship between P~ and V~ provided that p* and V* are specified. The 
locus of points obtained in this way will be referred to as a " Hugoniot " com­
pression ilurve, and P*, V* will be called the " starting point". 

(b) Single Shock Oompression of a Classical Liquid from P*R:;IO 

We shall consider first a set of starting points corresponding to an LID 
liquid which is either at atmospheric pressure or under its own vapour pressure. 
In these circumstances p* is very small and can be considered to be zero. The 
LJD theory then gives a unique relationship, which we have already derived 
(David and Hamann 1961), between V* and the reduced temperature T*. 

We can trace the Hugoniot curve from any particular starting point in the 
following way. We first suppose the fluid to be compressed isothermally from V* 
to a smaller volume V~. This generally raises its internal energy, although not 
sufficiently to satisfy equation (6). We then imagine the fluid to be heated at 
constant volume until it reaches a temperature T~ at which the LID energy does 
equal the Hugoniot energy. This point (P~, V~, T~) must lie on the Hugoniot 
curve starting at (P*=O, V*, T*). By repeating the operation for a range of 
final volumes we can find the general form of the Hugoniot curve. 

In principle the calculations can be performed automatically on a computer, 
but in our work we have used the existing LID compilations of Wentorf et al. 
(1950), together with suitable interpolation formulae.t We have calculated 
Hugoniot curves from seven starting temperatures in the range T* =0·7 to 1· 0, 
and, for comparison, worked out the corresponding isothermal and adiabatic 
compression curves from the same starting points. We have also estimated 
some of the thermodynamic properties of the fluid along the Hugoniot curve, 
again by interpolation in the tables of Wentorf et al. (1950). 

(c) Shock Oompression of a Quantal Liquid from p* R:;IO 

Lennard-Jones and Devonshire's theory is based on classical statistical 
mechanics, which are known to be inadequate for light liquids such as helium, 
hydrogen, and neon. For these it is necessary to use a more general equation of 
state involving de Boer's (1948) quantal parameter A*. In earlier papers 
(Hamann 1952,1957; David and Hamann 1953) we have derived an equation of 
this kind by applying a quantum correction to the classical theory. We have now 
used this equation to compute a single Hugoniot curve for a quantal liquid 
(A*=l) starting from P*=O, T*=0·75. 

t Dr. W. Fickett and Dr. W. W. Wood of the Los Alamos Scientific Laboratory have recently 
confirmed our results for liquid argon (Fig. 2) by automatic calculations on the IBM 704 computer 
(personal communication) . 
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(d) Oonditions after Adiabatic Expansion from a Shocked State 
After the passage of a shock wave through a material the substance expands 

into its surroundings. This expansion occurs adiabatically because shock waves 
of rarefaction are forbidden by thermodynamics (Hirschfelder, Curtiss, and Bird 
1954, p. 789). We can therefore follow the course of the expansion of a shocked 
LJD fluid by tracing points of constant entropy starting from a Hugoniot point 
(P~, V~, T~, S~) and moving to a series of points of lower pressure and larger 
volume (P;, V;, T;, S;=S~). In this way we have traced adiabats from several 
points on the Hugoniot based on the starting point p* =0, T* =0·75. 

For reasons to be discussed in the next paragraph, it is sometimes important 
to know the contribution which the expansion makes to the forward flow velocity 
of the material. This is given by the Riemann integral 

· -fP; (aV*)i * Wz- p. - ap* s. dP , 
I 

(7) 

where the integration is carried out along the expansion adiabat (see, for instance, 
Rice, McQueen, and Walsh 1958). The total flow velocity in the direction of the 
original shock is then w~ +w;. In evaluating (7) we have found it convenient 
to fit the adiabat to an empirical equation of the form used by Tait (1900), and 
then perform the integration numerically by means of Simpson's rule. 

If the material expands into a vacuum, then the final pressure is zero and 
the corresponding value of w~ +w; is the velocity, in molecular units, of the free 
surface of the material after shock acceleration. If on the other hand the material 
expands into another substance, say air, it generates a shock wave in the second 
substance and the boundary conditions require that the absolute pressure P e 
and velocity WI +we at the interface must lie on the pressure/flow-velocity curve 
for the second material. If this Hugoniot relation is known, as it is for ideal 
gases, then the interfacial conditions can be worked out. These conditions are 
important because they determine whether or not the original material will 
vaporize after the passage of a shock wave. In the present calculations we 
have considered the expansion of a shocked LJD fluid into air, which we have 
assumed to obey the ideal gas relationship 

W 1 =(P1-P)(p!!pJ i . (8) 

(e) Oonditions at the Head-on Oollision of Two Plane Shocks 
It is worthwhile to consider the conditions which exist after the head-on 

collision of two plane shock waves in an LJD fluid. We shall designate these 
conditions by the subscript 2, and the conditions in one of the initial shocks by 
the subscript 1. The Rankiue-Hugoniot relations (4)-(6) can then be rewritten 

(9) 

(10) 
(11) 

( 


